
440-TP-010-001

DADS MR-AFS Proof of Concept Results
for the ECS Project

Technical Paper

Technical Paper—Not intended for
formal review or government approval.

February 1995

Prepared Under Contract NAS5-60000

RESPONSIBLE ENGINEER

William Neville /s/ 2/28/95

Will Neville, Software Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Stephen Fox /s/ 3/18/95

Steve Fox, SDPS Office Manager Date
EOSDIS Core System Project

Hughes Applied Information Systems
Landover, Maryland

This page intentionally left blank.

iii 440-TP-010-001

Preface

This document contains the Multi Resident (MR) Andrew File System (AFS) Proof of Concept
(PCON) Report. This document is submitted as required by the ECS Statement of Work, Section
3.3.3.3, and does not require Government approval. The results of this proof of concept will also
be documented in the Prototyping and Studies Final Report (DID 333/DV3).

For additional technical information pertaining to this Data Server PCON, contact Tom Smith or
Will Neville, SDPS-DADS, at (301) 925-0647 / (301) 925-0658 or on email at
tsmith@eos.hitc.com / wneville@eos.hitc.com.

Questions concerning the control or distribution of this document should be addressed to:

Data Management Office
The ECS Project Office
Hughes Applied Information Systems
1616 McCormick Dr.
Landover, MD 20785

iv 440-TP-010-001

This page intentionally left blank.

v 440-TP-010-001

Contents

Preface

1. Introduction

1.1 Identification... 1-1

1.2 Summary.. 1-1

1.3 Purpose... 1-1

1.4 Approach.. 1-1

1.5 Parent Document.. 1-1

1.6 Applicable Documents ... 1-2

2. Hardware Configuration

2.1 Hardware Configuration... 2-1

3. Andrew File System

3.1 Product Summary - AFS 3.3a.. 3-1

3.2 Product Summary - MR-AFS 3.3a... 3-1

4. Proof of Concept Implementation

4.1 Proof of Concept Design.. 4-1

4.2 Evaluation Method / Criteria... 4-1

4.3 Test Cases/Procedures.. 4-1

4.3.1 AFS In-Cell Functional/Performance Series .. 4-1

4.3.2 AFS Out-of-Cell Performance Series... 4-3

4.3.3 MR-AFS In-Cell Functional/Performance Series... 4-3

4.3.4 MR-AFS Out-Of-Cell Performance Series.. 4-5

vi 440-TP-010-001

4.4 Performance Results... 4-6

4.5 Problems with the Proof of Concept ... 4-16

4.5.1 Hardware Problems... 4-16

5. Conclusions

6. References

Figures

2.1-1. MR AFS Proof of Concept Hardware Configuration... 2-1

4.4-1. AFS In Cell Unix cp PDPS to RAID... 4-6

4.4-2. File Deletion Times in AFS.. 4-6

4.4-3. AFS File Generation to RAID from Osaka.. 4-7

4.4-4. AFS In Cell RAID to PDPS FTP Get Times... 4-7

4.4-5. AFS Multiple Session(3) FTP Get Times.. 4-8

4.4-6. MR-AFS 2GB File Gen PDPS to RAID... 4-8

4.4-7. AFS Out of Cell EDOS FTP to INGEST (AFS Client) to RAID................................. 4-9

4.4-8. AFS Out of Cell RAID to PDPS FTP Get Times.. 4-9

4.4-9. AFS Out of Cell RAID to PDPS FTP Get Times... 4-10

4.4-10. AFS EDOS to INGEST (AFS Client) to RAID with Concurrent Read........ 4-10

4.4-11. MR-AFS In Cell Unix cp PDPS to RAID... 4-10

4.4-12. MR-AFS File Deletion Times.. 4-11

4.4-13. MR-AFS In Cell PDPS to RAID File Gen .. 4-11

4.4-14. MR-AFS In Cell RAID to PDPS FTP Get Times... 4-12

4.4-15. MR-AFS In Cell Multiple Sessions(3) FTP Get Times................................. 4-12

4.4-16. MR-AFS 2GB File Gen PDPS to RAID... 4-13

4.4-17. MR-AFS FTP EDOS to INGEST (AFS Client) to RAID............................ 4-13

4.4-18. MR-AFS Out of Cell RAID to PDPS FTP Get Times.................................. 4-14

4.4-19. RAID to PDPS FTP Read While Concurrent Write 4-14

4.4-20. MR-AFS FTP EDOS to INGEST (AFS Client) to RAID While
Concurrent Reading.. 4-15

4.4-21. UFS FTP from PDPS to RAID... 4-15

vii 440-TP-010-001

Appendix A - Prototype Data Points

Abbreviations and Acronyms

viii 440-TP-010-001

This page intentionally left blank.

1-1 440-TP-010-001

1. Introduction

1.1 Identification

This Data Server PCON Report is prepared for the Earth Observing System Data and Information
Systems (EOSDIS) Core System (ECS) project, contract number NAS5-60000.

1.2 Summary

This PCON has shown that an operating system such as AFS is a viable solution in meeting some
Science Data Processing Segment (SDPS) requirements. The PCON has also shown that MR-
AFS will support shared Redundant Arrays of Inexpensive Disks (RAID) storage devices.

1.3 Purpose

This PCON focused on a number of architectural and data management issues. First, it determined
the applicability and viability of an operating environment such as AFS in meeting SDPS data
requirements. AFS was the logical place to begin the PCON effort because it is an existing
commercial product with a large user base, and it forms the core of the Pittsburgh Supercomputing
Center's Multi Resident extensions.

 A second issue was to establish whether MR-AFS will support shared RAID storage devices for
multiple hosts. A capability for concurrent read/write file access would be prove invaluable for
supporting simultaneous read/write staging access associated with the Ingest, Planning and Data
Processing and Data Server subsystems at each Distributed Active Archive Center (DAAC).

1.4 Approach

The tests used in the PCON were designed to lockstep functionality and performance as the
evaluation progressed. Each phase of testing built on functionality and performance
measurements from previous tests. These related tests were designated as a "series". During each
series of tests the hardware and software system configuration was held constant while the
performance and functionality tests were performed. A standard test suite of files was used to
collect the performance data.

1.5 Parent Document

February 1993 ECS Statement of Work

1-2 440-TP-010-001

1.6 Applicable Documents

The following documents are applicable to this document:

193-707-PP1-002 ECS Prototype Results Review, submitted December 1993

193-216-SE1-001 ECS Requirements Specification, submitted February 1994

193-317-DV1-001 ECS Prototyping and Studies Plan, submitted May 1993

193-318-DV3-005 ECS Prototype and Studies Progress Report, submitted
November 1993

2-1 440-TP-010-001

2. Hardware Configuration

2.1 Hardware Configuration

Sun Sparc 20/50
Solaris 2.3
32 MB Ram 4 GB Disk

Data Provider

(yakuska)

AFS Cell

ECCS RAID
20 GB

(Shared Device)

Dual
Port

SCSI-2

Sun Sparc 20/50
Solaris 2.3

(Ingest)

(kyoto)

Sun Sparc 20/50
Solaris 2.3

128 MB Ram
128 MB Ram4 GB Disk
4 GB Disk

(Data User)

(osaka)

Isolated Fiddi
Ring

(EDOS)

Figure 2.1-1. MR AFS Proof of Concept Hardware Configuration

2-2 440-TP-010-001

This page intentionally left blank.

3-1 440-TP-010-001

3. Andrew File System

3.1 Product Summary - AFS 3.3a

AFS is a distributed file system originally developed at Carnegie Mellon University, and first
released commercially in early 1990. AFS allows multiple users to share and access files stored in
a network of computers. Files may reside on many different machines but are available to users, if
the user holds the requisite file permissions, on every machine. AFS stores files on certain
machines in the network, called file server machines. These machines also provide the delivery
service for the files to the other machines in the network called client machines. All of the
machines that run either the AFS server software or the AFS client software are encompassed in
an AFS cell. AFS allows the local file space for all the machines in a cell to be combined into a
global uniform name space that makes file access transparent. Thus each user on every "in cell"
machine sees the same path names. AFS groups files into logical volumes for administrative and
performance management reasons. A volume is used to group related files and store them together
in an AFS partition. Volumes can be moved from one partition to another transparent to the user.
Because of the distributed nature of AFS, Kerberos authentication services are used for file
security. Servers, clients and users all must prove their identities in order to be able to exchange
information. Users are required to log into the AFS system by way of user name and password
information before they can gain access to files stored in AFS. Users may also control access to
files and directories that they own by way of access control lists.

3.2 Product Summary - MR-AFS 3.3a

The MR (Multi-Resident) extensions to the AFS environment were developed at Pittsburgh Super
Computing Center (PSC). MR-AFS is based on AFS but is optimzed to efficeintly support mass
storage systems by providing services such as automatic data migration across various storage
media, multiple file residencies, and shared storage devices. These allows MR-AFS to provide an
"infinite" AFS storage space. MR-AFS also supports dynamic hierarchical structures of storage
systems by providing a system of prioritized access. Parameters are tunable to allow for
maximum and minimum file sizes across various storage devices. MR-AFS volumes can exceed
the 2 gigabyte maximum partition size imposed by the standard Unix file system because of the
storage systems that it supports. Files within a volume can also reside on more than one type of
media. When accessing a file that is on a shared storage device, the data path will not be through
the server machine but directly to client (assuming the client has direct access to the shared device.)
This allows for faster transfers with one less "data hop" to go through to get to the client machine.

3-2 440-TP-010-001

This page intentionally left blank.

4-1 440-TP-010-001

4. Proof of Concept Implementation

4.1 Proof of Concept Design

The design of the PCON emphasized functionality. Performance data was collected as a means of
comparing divergent network and architectural configurations. The test suite consisted of 3 file
groups of the following sizes: 1KB, 5KB, 10KB, 50KB, 100KB, 250KB, 500KB, 1MB, 5MB,
10MB, 50MB, 100MB, 250MB, 500MB, 1GB.

4.2 Evaluation Method / Criteria

This effort's success or failure was evaluated by applying the following criteria to the tests that
were performed.

1. The AFS operating environment will be deemed viable in meeting SDPS requirements if, at a
minimum, it demonstrates the following capabilities:

A. Security and access control lists allow successful differentiation between the
authorized and unauthorized users for the seven levels of access privileges provided
by the product.

B. There is no loss of continuity due to volume replication: data is not corrupted; the
access from multiple points is transparent.

C. Scalability of up to 2GB is demonstrated for file retrieval and storage caching. Speed
and performance of caching are of essence.

2. The MR-AFS will be deemed viable in meeting SDPS requirements, if, at a minimum, it
demonstrates the following capabilities:

A. After duplication of all the tests performed on AFS, for MR-AFS there are no defects
found in the performance of MR-AFS due to the changes associated with multi-
residence.

B. Allows multiple hosts (2 in the PCON configuration) to simultaneously share for
reading and writing a large "free pool" of RAID space without data loss or significant
performance degradation.

4.3 Test Cases/Procedures

4.3.1 AFS In-Cell Functional/Performance Series

Series Purposes:

- Establish AFS functional/performance benchmarks within cell
- Initial AFS cell administration and setup experience

4-2 440-TP-010-001

Series Config:

- AFS Server on Kyoto
- AFS Client on Osaka
- ECCS RAID disk used by Kyoto
- Normal user and administrator accounts

Series Tests Performed:

a) The test suite of files was copied from Osaka to the RAID using the Unix cp
command. The transfer and deletion times were recorded. The graph shows a
maximum transfer rate of about 250KB/sec with declining performance as the size of
the file increases. The transfer times are in Figure 4.4-1 of the Performance Results
section of this paper and the deletion times are in Figure 4.4-2. The deletion results
show a maximum rate of 5 MB/sec.

b) The following AFS rights and privledges were toggled and verified for proper user
and administrative access to directories. There were no abnormal results.

- LOOKUP
- INSERT
- DELETE
- ADMINISTER

c) The following AFS rights and privledges were toggled and verified for proper user
and administrative access to files. There were no abnormal results.

- READ
- WRITE
- LOCK

d) The test suite was generated from Osaka to the RAID using a file generation tool. The
creation times of theses files were recorded. The results of this test are in
Figure 4.4-3 of the Performance Results section of this paper. The results show a
maximum file generation rate of about 220KB/sec with minimal dropoff as file size
increases.

e) The test suite was copied to the RAID device and the files were FTPed back to Osaka
from a read-only copy of the volume. The transfer rates were recorded. The results of
this test are in Figure 4.4-4 of the Performance Results section of this paper. This
graph shows that as the file size increases a steady state for read access is reached at
about 550KB/sec. The test suite was also FTPed back to Osaka by multiple sessions.
The read rates were recorded. The results of this test are in Figure 4.4-5 of the
Performance Results section of this paper. The results of adding multiple sessions
for FTP get access also reached a steady state at around 500KB/sec.

f) A 2GB file was generated to the RAID from Osaka. The creation and deletion time
was recorded. This test was run twice. The results of this test can be found in

4-3 440-TP-010-001

Figure 4.4-6 of the Performance Results section of this paper. This graph shows that
the file generation time for 2GB is about 72KB/sec.

4.3.2 AFS Out-of-Cell Performance Series

Series Purposes:

- Establish performance benchmarks on AFS access from outside of cell
- Demonstrate possible EDOS/ECS method of interaction

Series Config:

- AFS Server on Kyoto
- AFS Client on Kyoto
- AFS Client on Osaka
- ECCS RAID disk used by Kyoto

Series Tests Performed:

a) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. The transfer times were recorded. The results of this test are in Figure 4.4-7
of the Performance Results section of this paper. This graph shows higher transfer
rates for smaller files while the transfer rates decrease as file size increases.

b) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was FTPed back from RAID to Osaka after the original transfer
was completed and the file was closed. The transfer rates were recorded. The results
of this test are in Figure 4.4-8 of the Performance Results section of this paper. This
graph shows that the FTP get times reach a steady state at about 500KB/sec.

c) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was read back from RAID to Osaka before the file transfer was
complete. This test was designed to determine the behavior of file access before file
closure. The observed behavior was that for smaller files that do not require multiple
writes to disk, the files were not read and a read error occurred. For files that required
more than one write to disk, the data that was flushed to disk was read, and there was
no read error. There was no way to tell whether or not the entire file was being read
or not. There are no performance numbers for this test.

d) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was FTPed back from RAID to Osaka after the original transfer
was completed and the file was closed while the next file was being transferred. The
transfer results are in Figure 4.4-9 and the results of the file writes are in
Figure 4.4-10 of the Performance Results section of this paper. The get times show a
steady state reached around 520KB/sec and the write times decrease as file size
increases.

4-4 440-TP-010-001

4.3.3 MR-AFS In-Cell Functional/Performance Series

Series Purposes:

- Establish MR-AFS functional/performance benchmarks within cell
- Initial MR-AFS cell administration and setup experience

Series Config:

- MR-AFS Server on Kyoto
- AFS Client on Osaka
- ECCS RAID disk used by Kyoto
- Normal user and administrator accounts

Series Tests Performed:

a) The test suite of files was copied from Osaka to RAID using the Unix cp command.
The transfer and deletion times were recorded. The transfer results are in
Figure 4.4-11 and the delettion times are in Figure 4.4-12 of the Performance Results
section of this paper. The graph shows a rate of about 120KB/sec transfer times.

b) The following MR-AFS rights were toggled and verified for proper user and
administrative access to directories. There were no abnormal results.

- LOOKUP
- INSERT
- DELETE
- ADMINISTER

c) The following MR-AFS rights were toggled and verified for proper user and
administrative access to files. There were no abnormal results.

- READ

- WRITE

- LOCK

d) The test suite was generated from Osaka to RAID using a file generation tool. The
creation times of theses files were recorded. The results of this test are in
Figure 4.4-13 of the Performance Results section of this paper. This graph shows an
inconsistent pattern for the small files while large files showed a steady state pattern.

e) The test suite was copied to the RAID device and the files were FTPed back to Osaka.
The FTP rates were recorded. The results of this test are in Figure 4.4-14 of the
Performance Results section of this paper. This graph shows a ramp up to a steady
state at arount 500KB/sec. The test suite was also FTPed back to Osaka by multiple
sessions. The FTP rates were recorded. The results of this test are in Figure 4.4-15
of the Performance Results section of this paper. This graph shows a steady state
reached at about 470KB/sec with multiple sessions.

4-5 440-TP-010-001

f) A 2GB files was generated to RAID from Osaka. The creation time was recorded.
This test was run 2 times. The results of this test can be found in Figure 4.4-16 of the
Performance Results section of this paper. This graph shows an average creation
time of 71.5KB/sec.

4.3.4 MR-AFS Out-Of-Cell Performance Series

Series Purposes:

- Establish performance benchmarks on MR-AFS access from outside of cell
- Demonstrate possible EDOS/ECS method of interaction

Series Config:

- MR-AFS Server on Kyoto
- AFS Client on Kyoto
- AFS Client on Osaka
- ECCS RAID disk used by Kyoto

Scenarios:

a) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. The transfer times were recorded. The results of this test are in Figure 4.4-17
of the Performance Results section of this paper. This graph shows higher transfer
rates on the smaller files and at the 1MB file size the rate evens out.

b) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was FTPed back from RAID to Osaka after the original transfer as
completed and the file was closed. The FTP rates were recorded. The results of this
test are in Figure 4.4-18 of the Performance Results section of this paper. This graph
shows a ramp up to a steady state at about 500KB/sec.

c) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was read back from RAID to Osaka before the file transfer was
complete. This test was designed to determine the behavior of file access before file
closure. The observed behavior was that for smaller files that do not require multiple
writes to disk, the files were not read and a read error occurred. For files that required
more than one write to disk, the data that was flushed to disk was read, and there was
no read error. There was no way to tell whether or not the entire was was being read
or not. There are no performance numbers for this test.

d) The test suite was transferred to RAID via FTP from Yakuska to the AFS client on
Kyoto. Each file was FTPed back from RAID to Osaka after the original transfer
was completed and the file was closed while the next file was being transferred. The
results of the file reads are in Figure 4.4-19 and the results of the file writes are in
Figure 4.4-20 of the Performance Results section of this paper. These graphs show
read times to be consistent at about 120KB/sec with concurrent writes and write times
be higher with small files and lower with large files while writing is concurrent.

4-6 440-TP-010-001

4.4 Performance Results

Each figure of these results represents a complete scenario from the functional/performance series
indicated above.

AFS In Cell Unix cp PDPS to RAID

File Size in MB

MB/sec

0

0.05

0.1

0.15

0.2

0.25

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-1. AFS In Cell Unix cp PDPS to RAID

The transfer rates for the small files did not register in the log file due to system time constraints.
The system time call only calculates whole seconds and the transfers were less than a second,
therefore they are registered as zero on the graph.

File Deletion Times in AFS

File Size in MB

MB/sec0

2

4

6

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-2. File Deletion Times in AFS

The deletion times for the small files did not register in the log file due to system time constraints.
The system time call only calculates whole seconds and the deletions were less than a second,
therefore they are registered as zero on the graph.

4-7 440-TP-010-001

AFS File Generation to RAID from Osaka

File size in MB

MB/sec

0

0.05

0.1

0.15

0.2

0.25

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-3. AFS File Generation to RAID from Osaka

AFS In Cell RAID to PDPS FTP Get
times

File Size in MB

MB/sec0
0.2
0.4
0.6
0.8

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-4. AFS In Cell RAID to PDPS FTP Get Times

4-8 440-TP-010-001

AFS Multiple Session(3) FTP Get Times

File Size in MB

MB/sec
0

0.2

0.4

0.6

0.8

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-5. AFS Multiple Session(3) FTP Get Times

MR-AFS 2GB File Gen PDPS to RAID

File Size in MB

M
B

/s
ec

0.0722

0.0723

0.0724

0.0725

0.0726

0.0727

0.0728

0.0729

0.073

0.0731

2000 2000

Figure 4.4-6. MR-AFS 2GB File Gen PDPS to RAID

4-9 440-TP-010-001

AFS Out of Cell EDOS FTP to INGEST
(AFS Client) to RAID

File size in MB

MB/sec

0

0.1
0.2

0.3
0.4

0.5
0.6
0.7

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-7. AFS Out of Cell EDOS FTP to INGEST (AFS Client) to RAID

AFS Out of Cell RAID to PDPS FTP Get Times

File Size in MB

M
B

/s
ec

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-8. AFS Out of Cell RAID to PDPS FTP Get Times

4-10 440-TP-010-001

AFS Out of Cell RAID to PDPS FTP Get Times

File Size in MB

M
B

/s
ec

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-9. AFS Out of Cell RAID to PDPS FTP Get Times

AFS EDOS to INGEST (AFS Client) to
RAID with Concurrent Read

File Size in MB

M
B

/s
ec

0
0.2
0.4
0.6
0.8

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-10. AFS EDOS to INGEST (AFS Client) to RAID with Concurrent Read

MR-AFS In Cell Unix cp PDPS to RAID

File Size in MB

MB/sec0
0.05

0.1
0.15

0.2
0.25

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-11. MR-AFS In Cell Unix cp PDPS to RAID

4-11 440-TP-010-001

The transfer rates for the small files did not register in the log file due to system time constraints.
The system time call only calculates whole seconds and the transfers were less than a second,
therefore they are registered as zero on the graph.

MR-AFS File Deletion Times

File Size in MB

MB/sec
0
1
2
3
4
5

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-12. MR-AFS File Deletion Times

The deletion times for the small files did not register in the log file due to system time constraints.
The system time call only calculates whole seconds and the deletions were less than a second,
therefore they are registered as zero on the graph.

MR-AFS In Cell PDPS to RAID File Gen

File Size in MB

M
B

/s
ec

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-13. MR-AFS In Cell PDPS to RAID File Gen

4-12 440-TP-010-001

MR-AFS In Cell RAID to PDPS FTP
Get Times

File Size in MB

MB/sec
0

0.1
0.2
0.3
0.4
0.5
0.6

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-14. MR-AFS In Cell RAID to PDPS FTP Get Times

MR-AFS In Cell Multiple
Sessions(3) FTP Get Times

File Size in MB

MB/sec
0

0.1
0.2
0.3
0.4
0.5
0.6

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-15. MR-AFS In Cell Multiple Sessions(3) FTP Get Times

4-13 440-TP-010-001

MR-AFS 2GB File Gen PDPS to RAID

File Size in MB

M
B

/s
ec

0.07155
0.0716

0.07165
0.0717

0.07175
0.0718

0.07185
0.0719

0.07195

2000 2000

Figure 4.4-16. MR-AFS 2GB File Gen PDPS to RAID

MR-AFS FTP EDOS to INGEST (AFS Client) to RAID

File Size in MB

M
B

/s
ec

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-17. MR-AFS FTP EDOS to INGEST (AFS Client) to RAID

4-14 440-TP-010-001

MR-AFS Out of Cell RAID to PDPS
FTP Get Times

File Size in MB

MB/sec0

0.2

0.4

0.6

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-18. MR-AFS Out of Cell RAID to PDPS FTP Get Times

RAID to PDPS FTP Read While
Concurrent Write

File Size in MB

M
B

/s
ec

0

0.05

0.1

0.15

0.2

0 0.
0
1

0.
0
1

0.
0
5

0.
1

0.
2
5

0.
5

1 5 1
0

5
0

1
0
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-19. RAID to PDPS FTP Read While Concurrent Write

4-15 440-TP-010-001

MR-AFS FTP EDOS to INGEST (AFS Client)
to RAID While Concurrent Reading

File Size in MB

M
B

/s
ec

0

0.2

0.4

0.6

0.8

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

1
0
0
0

Figure 4.4-20. MR-AFS FTP EDOS to INGEST (AFS Client) to RAID While
Concurrent Reading

UFS FTP from PDPS to RAID

File size in MB

MB/sec

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0 0.
0
1

0.
0
1

0.
0
1

0.
0
5

0.
1

0.
1

0.
2
5

0.
5

0.
5

1 5 5 1
0

5
0

5
0

1
0
0

2
5
0

2
5
0

5
0
0

1
0
0
0

Figure 4.4-21. UFS FTP from PDPS to RAID

4-16 440-TP-010-001

4.5 Problems with the Proof of Concept

4.5.1 Hardware Problems

There was a problem during the setup and configuration of the RAID using standard UFS where
one machine would be performing read/write tests on the RAID partition and the other machine
would be running monitoring software to probe the SCSI bus for statistics. During these initial
tests some commands to the SCSI bus would time-out and the bus would perform a hard reset. It
would fail with the following error messages:

Nov 4 09:03:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:03:49 kyoto unix: Disconnected tagged cmds (1) time-out for Target 0.0
Nov 4 09:03:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:03:49 kyoto unix: SCSI transport failed: reason 'time-out': retrying command
Nov 4 09:03:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:03:49 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:03:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:03:49 kyoto unix: SCSI transport failed: reason 'reset': giving up
Nov 4 09:03:52 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:03:52 kyoto unix: Identify message 0x80 from Target 0
Nov 4 09:03:52 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:03:52 kyoto unix: Two byte message 'SIMPLE QUEUE TAG' 0xdc rejected
Nov 4 09:03:52 kyoto unix: sd15: incomplete read- retrying
Nov 4 09:06:17 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:06:17 kyoto unix: device busy too long
Nov 4 09:06:17 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:06:17 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:07:29 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:07:29 kyoto unix: Disconnected tagged cmds (8) time-out for Target 0.0

4-17 440-TP-010-001

Nov 4 09:07:29 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:07:29 kyoto unix: SCSI transport failed: reason 'time-out': giving up
Nov 4 09:08:40 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:08:40 kyoto unix: Disconnected tagged cmds (8) time-out for Target 0.0
Nov 4 09:08:40 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:08:40 kyoto unix: SCSI transport failed: reason 'time-out': retrying command
Nov 4 09:08:40 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@1,0
(sd16):
Nov 4 09:08:40 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:08:40 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@3,0
(sd18):
Nov 4 09:08:40 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:08:49 kyoto unix: data transfer overrun
Nov 4 09:08:49 kyoto unix: esp: State=DATA Last State=DATA_DONE
Nov 4 09:08:49 kyoto unix: esp: Latched stat=0x91<IPND,XZERO,IO>
intr=0x10<BUS> fifo 0x8a
Nov 4 09:08:49 kyoto unix: esp: last msg out: IDENTIFY; last msg in: DISCONNECT
Nov 4 09:08:49 kyoto unix: esp: DMA csr=0x40040010<INTEN>
Nov 4 09:08:49 kyoto unix: esp: addr=fc0aebc8 dmacnt=0 last=fc0ae9c8
last_cnt=200
Nov 4 09:08:49 kyoto unix: esp: Cmd dump for Target 0 Lun 0:
Nov 4 09:08:49 kyoto unix: esp: cdblen=6, cdb=[0x8 0x3 0x9c 0x3a 0x1 0x0]
Nov 4 09:08:49 kyoto unix: esp: pkt_state=0xb<XFER,SEL,ARB> pkt_flags=0x4000
pkt_statistics=0x2
Nov 4 09:08:49 kyoto unix: esp: cmd_flags=0x10422 cmd_timeout=60
Nov 4 09:08:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000 (esp1):
Nov 4 09:08:49 kyoto unix: Target 0.0 reducing sync. transfer rate
Nov 4 09:08:49 kyoto unix: polled command time-out
Nov 4 09:08:49 kyoto unix: esp: State=DATA Last State=DATA_DONE
Nov 4 09:08:49 kyoto unix: esp: Latched stat=0x91<IPND,XZERO,IO>
intr=0x10<BUS> fifo 0x8a
Nov 4 09:08:49 kyoto unix: esp: last msg out: IDENTIFY; last msg in: DISCONNECT
Nov 4 09:08:49 kyoto unix: esp: DMA csr=0x40040010<INTEN>

4-18 440-TP-010-001

Nov 4 09:08:49 kyoto unix: esp: addr=fc0aebc8 dmacnt=0 last=fc0ae9c8
last_cnt=200
Nov 4 09:08:49 kyoto unix: esp: Cmd dump for Target 0 Lun 0:
Nov 4 09:08:49 kyoto unix: esp: cdblen=6, cdb=[0x8 0x3 0x9c 0x3a 0x1 0x0]
Nov 4 09:08:49 kyoto unix: esp: pkt_state=0xb<XFER,SEL,ARB> pkt_flags=0x4001
pkt_statistics=0x2
Nov 4 09:08:49 kyoto unix: esp: cmd_flags=0x10422 cmd_timeout=60
Nov 4 09:08:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:08:49 kyoto unix: SCSI transport failed: reason 'data_ovr': retrying command
Nov 4 09:08:49 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@0,0
(sd15):
Nov 4 09:08:49 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:08:50 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@1,0
(sd16):
Nov 4 09:08:50 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:08:50 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@2,0
(sd17):
Nov 4 09:08:50 kyoto unix: SCSI transport failed: reason 'reset': retrying command
Nov 4 09:08:50 kyoto unix: WARNING:
/iommu@f,e0000000/sbus@f,e0001000/dma@1,81000/esp@1,80000/sd@3,0
(sd18):
Nov 4 09:08:50 kyoto unix: SCSI transport failed: reason 'reset': retrying command

There were two items that were associated with the temporary solution and workaround to this
problem. The first item identified was the SCSI identification number for each machine had the
same value. The other item has to do with the way the SCSI protocol queues commands. The
ECCS technical people found that there was an error in their controller firmware. This error was
causing the time-out problem. The workaround to this problem was to turn off SCSI tagged
command queuing so that one and only one SCSI command at a time would be serviced. This
caused a slight degradation in performance under ECCS SCSI level performance analysis. This
change offered a temporary solution to the problem. ECCS has since fixed the problem in their
next generation of RAID device and will go back and fix the problem in this model. These
problems were found and fixed during installation and configuration of the RAID device and
before the AFS software was installed therefore not affecting functionality.

During initial configuration and installation it was noticed that the ECCS RAID device was
inherently slow. Transfer rates were not as claimed and not very good. The performance numbers
for standard UFS file copies can be seen in Figure 4.4-21 of the Performance Results section of

4-19 440-TP-010-001

this paper and should be used only in comparison to the performance numbers for AFS and MR-
AFS.

There was an anomaly noticed during Out of Cell testing of both AFS and MR-AFS where files
that were FTPed from Yakuska to Kyoto would lose 1 byte for every 1KB of file transferred.
This problem has not been resolved as of the writing of this paper, but technical support for
MR-AFS has stated that this problem has been seen before and had been traced to the router
configuration and the FTP packet size. Investigations by Bruce Clark revealed that this problem
was due to a "bug" in the MR-AFS ftp daemon. During default (ASCII) transfers, bytes were lost.
When ftp was explicitly placed into binary mode, no data was lost. This information was provided
to PSC for problem resolution.

4-20 440-TP-010-001

This page intentionally left blank.

5-1 440-TP-010-001

5. Conclusions

From the goals set forth in this paper it can be concluded that AFS is a viable solution in meeting
SDPS requirements in its functional capabilities. The functional testing of access control lists in
determining authorized and unauthorized users was successful and complete. It was shown in this
testing that access from multiple points to the same data is transparent and without loss of
continuity. AFS is capable of handling any size files up to 2GB with only minor variance from
the performance experienced with UFS.

MR-AFS is also viable solution in meeting SDPS requirements. It was determined through these
tests that MR-AFS was not defective in function or performance when put through the same series
of tests as AFS. MR-AFS will allow multiple hosts to simultaneously share for reading and
writing a large "free pool" of RAID space without data loss or significant performance
degradation.

The performance of the system as configured was less than desired. Since the main thrust of this
effort was the functional ability of both AFS and MR-AFS the system suffered from a lack of
optimum tuning. The were many parameters of the RAID device that were tunable but were not
tuned. The idea being to get a stable system and keep it constant throughout the entire PCON and
focus on the qualitative aspects of this effort. In that light, the performance numbers that were
collected should be used as a relative guide between the performance of AFS versus MR-AFS in
determining any degradation of performance due to the multi-resident extensions of MR-AFS. If
this would have been a performance based effort then there would have been more data points
collected.

While neither of these products represents an entire solution to the challenges that are present in
quest for a truly network attached storage solution, both represent building blocks with which the
SDPS requirements can be attacked and conquered.

5-2 440-TP-010-001

This page intentionally left blank.

6-1 440-TP-010-001

6. References

AFS Command Reference Manual, Transarc Corporation, 1993.

AFS User's Guide, Transarc Corporation, 1993.

AFS System Administrator's Guide, Transarc Corporation, 1993.

MR-AFS System Administration Guide, Pittsburgh Super Computer Advanced File Systems
Group, 1994.

6-2 440-TP-010-001

This page intentionally left blank.

A-1 440-TP-010-001

Appendix A - Prototype Data Points

For brevity the data collected for Prototype 3 will be available as a separate document in the ECS
Library and the World Wide Web. File name will be inserted here.

A-2 440-TP-010-001

This page intentionally left blank.

AB-1 440-TP-010-001

Abbreviations and Acronyms

AFS Andrew File System

ECS EOSDIS Core System

FDDI Fiber Distributed Data Interface

FTP File Transfer Protocol

GB Giga Byte

KB Kilo Byte

MB Mega Byte

NFS Network File System

OS Operating System

PCON Proof of Concept

RAID Redundant Array of Inexpensive Disks

SCSI Small Computer System Interface

SDPS Science Data Processing Segment

UFS Unix File System

SUN Sun MicroSystems

	1. Introduction
	1.1 Identification
	1.2 Summary
	1.3 Purpose
	1.4 Approach
	1.5 Parent Document
	1.6 Applicable Documents

	2. Hardware Configuration
	2.1 Hardware Configuration

	3. Andrew File System
	3.1 Product Summary - AFS 3.3a
	3.2 Product Summary - MR-AFS 3.3a

	4. Proof of Concept Implementation
	4.1 Proof of Concept Design
	4.2 Evaluation Method/Criteria
	4.3 Test Cases/Procedures
	4.4 Performance Results
	4.5 Problems with the Proof of Concept

	5. Conclusions
	6. References
	List of Figures

